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Maximum likelihood decoding of short constraint-length convolutional codes is
one of the likely candidates for implementing high-performance telemetry systems
for future deep-space missions. It has, in fact, been considered to be the best choice
for video missions, providing better performance at the design point of 5 X 10~
than other systems of comparable complexity. Recent advances in knowledge of
sequential decoding have posed the question as to whether sequential decoding
might, in fact, be preferable to maximum likelihood decoding. The answer, devel-
oped here in terms of a hypothesized maximum likelihood decoder built techno-
logically similar to the JPL high-speed multi-mission sequential decoder, is that
maximum likelihood decoding is preferable to sequential decoding at a 5 X 10~ bit
error rate. The reverse is true at 10-° and below.

Two code families of variable constraint length are also developed which per-
mit easy implementation of encoders for this hypothesized maximum-likelihood

decoder.

I. Introduction

Maximum-likelihood decoding of short constraint-length
convolutional codes is one of the likely candidates for im-
plementing high performance telemetry systems for future
deep-space missions. Proposed designs have variously
ranged over constraint-lengths from five to eight. Almost
always the proposed decoder is capable of decoding the
longest code at the highest anticipated bit rate. A number
of future missions will involve more than one planetary
encounter with a significantly lower maximum data rate
capability at the second encounter than at the first. The
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question arises in this circumstance whether it might be
desirable to consider a coding system for which moderate
coding gain is achieved at the highest bit rate, but with
significantly better performance at lower data rates. This
article proposes characteristics for such a decoder, pre-
sents codes which might be used with it, and compares its
performance with that of a sequential decoder built using
the same technology.

By way of example, consider a possible mission to
Jupiter, Uranus, and Neptune at the end of this decade,
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having a maximum data rate of 10° bits/s at Jupiter. The
proposed decoder would operate at constraint length K=5
for the Jupiter encounter. The usable constraint length
would increase to K = 8 at Uranus and K = 10 at Neptune.
At 5 X 10-2 BER, this increase in constraint length is com-
parable to an increase of 0.85 dB in bit signal-to-noise
ratio at the Neptune encounter.

Il. The Proposed Decoder

Most decoders for short constraint-length convolutional
codes built or proposed to date are of one of two types,
either a fully parallel multiple processor device capable of
very high-speed operation (Ref. 1), or a single processor
device using a somewhat larger constraint length code,
having a fast enough semiconductor memory to permit
operation at the desired constraint length and data rate.
Suppose instead of asking for the fastest technically feasi-
ble memory, the designer of the single-processor decoder
had asked for the fastest mass-produced complete memory
system. Today, the answer to such an inquiry would be a
core memory system with approximately a 1-ps cycle time.
A decoder implemented with this memory would operate
perhaps one fifth as fast as a decoder with high-speed
semi-conductor memory. In exchange for this decrease in
speed, the designer would have obtained the use of a
mature and very reliable memory technology; technology
where he could easily obtain memory of the size needed
to decode codes of constraint length 12 or longer; tech-
nology where the difficulty of testing and maintaining the
memory is a very slowly increasing function of the memory
size. He could almost ignore memory size as a constrain-
ing factor in determining the longest constraint length that
his decoder would decode.

Choosing the slower core memory would naturally re-
duce the upper limit of data rates which could be decoded.
It would also reduce the constraint length of the code
which could be decoded at the highest data rate designed.
However, depending upon mission parameters, the bigger
but slower core could increase the usable constraint
length, and hence increase the coding gain at the lower
data rates occurring later in the mission where the coding
gain may be more needed. Let us examine the decoder’s
behavior. The convolutional encoder at constraint-length
k can assume 2% possible “states.” For each encoder state,
the decoder must record a likelihood and a most-likely
data path leading to that state. Data for the possible en-
coder states are accessed two-at-a-time for decoding com-
putations, and data can be arranged so that the pairs of
states can be simultaneously accessed from separate mem-
ory units. Thus, 22 computations are required to decode
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one bit of a constraint length-k code. Using TTL logic, the
decoder computations could be easily performed within
the memory cycle in which the needed data is fetched.
The hypothetical decoder is thus able to decode one bit
of a constraint length k code in 2%-2 ps.

To see what this means in terms of code performance,
examine the curves shown in Fig. 1 where the SNR needed
to achieve a fixed design-goal bit error probability is
plotted with respect to data rate, assuming that the de-
coder is operating at as long a constraint length as pos-
sible for each data rate. The performance-intercepts for
the various codes were obtained from previously pub-
lished simulation results (Ref. 2). Performance-intercepts
for several other existing or proposed coding systems are
included for comparison.

lll. Variable Constraint-Length Codes

The codes displayed in Fig. 1 are in all cases the best-
known codes at each constraint length. They do not in
any sense form a family with common characteristics, so
implementation on a spacecraft would require almost a
complete encoder for each constraint length. Codes which
form a nested family could, however, be implemented
with little more logic than a single encoder of the longest
constraint length involved.

The rate 1/2 quick-look code devised by Massey (Ref. 3)
is a code of this type. It was defined for a constraint length
k = 48 bits, but can be truncated to k < 48 by the addi-
tion of coder taps at depth k to both generators and the
deletion of all taps beyond k. Very slight modifications
to Massey’s algorithm are needed to produce a rate 1/3
quick-look code. At k = 32, the tap matrix of the resultant
code is

7630 7777 0000 7707 0700 7700 0077 0777 (1)

In Eq. (1), 7s represent taps at that depth on all genera-
tors, the 6 represents taps on the first and second gen-
erators at delay one, and the 3 represents taps on the
second and third generator at delay two. This code is
quick-look in the sense that it allows two independent
estimates of each bit, each one of which requires only one
mod-2 operation. The direct inverse for this code has the
lowest possible error probability of any nonsystematic rate
1/3 code. The code can be truncated to any depth k, by
insertion of a 7 there, and setting all entries beyond k to 0.
This code has been simulated in the vicinity of 5 X 103
bit error rate at various constraint lengths. The results are
plotted in Fig. 2.
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Another family of nested codes has been hand con-
structed with the aid of the hill-climbing code construc-
tion software (Ref. 2). We observe, first of all, that the
best k=4 code is nested within the best k =5 code.
Starting at that k = 5 code, a k = 6 code was constructed
by inserting a 0 into the tap matrix at depth 5, a 7 at
depth 6, and asking the hill-climb software to insert taps—
hopefully at depth 5. The process then proceeded to
k=17, k=8, etc., and involved frequent back tracking,
and compromise betweer performance at different con-
straint lengths. At k = 11, the tap matrix of the resultant
code is

-~
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The result was a satisfying rather than optimizing one,
and could doubtless be improved; but even so, the family
of codes performs very close to the non-nested set of
“best” codes in the vicinity of 5X 10-* error rate. The
results of simulating several members of this code family
are shown in Fig. 3. In that region, the codes which were
compromised to improve others appear to be no worse
than 0.1 dB below the best codes (Ref. 2, Fig. 27), while
the best members of the nested code family are essentially
equal in performance to the overall best code of the same

length.

Fig. 4 shows the E;/N, required to achieve a 5 X 10-3
bit error probability as a function of data rate for the
three sets of rate 1/3 codes discussed here using the de-
coder with 1-us computation time. The quick-look codes
perform significantly poorer than the other two types, and
could reasonably be dropped from consideration for short
constraint-length application. The nested non-quick-look
codes appear to be a good choice if a corresponding space-
craft encoder is to be implemented at several constraint

lengths.

IV. Comparison to Sequential Decoding

The performance variation over the (varying constraint-
length) set of convolutional codes is analogous to the
performance variation of a sequential decoder with de-
creasing data rate and increasing speed advantage. Recent
work has related the performance of an optimally
buffered sequential decoder to the decoding unit speed
only, and has dispelled the illusion that arbitrary increases
in buffer size can produce arbitrary improvement. A hard-
ware sequential decoder exists at JPL which can perform
a decoding computation in 1 us (Ref. 4). This decoder was

1See “Performance of an Optimum Buffer Management Strategy for
Sequential Decoding,” by J. W. Layland in this issue.
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constructed from approximately the same technology as
the decoder for short constraint length codes proposed in
Section II.

Let us hypothesize, for comparison purposes, a sequen-
tial decoding machine using optimum buffer management
and capable of performing one computation in 1 us. The
amount of logic necessary to implement this decoder is
judged by this writer to be approximately equal to the
logic required to implement the decoder of Section II.
Assuming that this is true, the comparison between the
two types of codes is directly meaningful. The speed of
either decoder could, doubtless, be pushed upward by
factors of 2 to 4 by clever design, at some increase in cost,
and, perhaps, flexibility. The 1-us figure for both repre-
sents a straight-forward design of unarguable feasibility.
At the very least, comparison with that figure provides a
reference point from which more detailed studies could
start, if needed.

The proper comparison point corresponds to an error
probability for the optimum decoder of Pg, and a deletion
probability for the sequential decoder of approximately
2 % Py, since on the average, between % and % of the bits
in a deleted block will be in error. The graphical compari-
son in Fig. 5 is at 5 X 10~ and 5 X 10-* bit error proba-
bility. Data for these curves was extracted from Fig. 1,
and from Fig. 5 in “Performance of an Optimum Buffer
Management Strategy for Sequential Decoding,” by J. W.
Layland, in this issue. At the higher failure rate, the short
constraint-length codes and decoder appear preferable,
unless the customer for the data wishes to use the fact that
nondeleted blocks from the sequential decoder have an
error probability of 10-¢ or less. At the lower error proba-
bility, the sequential decoder performs better, owing, of
course, to the greater steepness of the sequential decoding
deletion probability versus signal-to-noise ratio (SNR)
curves.

Note that the preferences just observed do not change
if either of the decoders is sped up small amounts by
clever design!

V. Summary

This article has developed a hypothesized convolutional
decoder capable of optimum decoding of “short” con-
straint length codes of perhaps length 12 or more; has
developed a workable nested family of codes such that an
encoder for all constraint lengths from K =4 to K=K,
is little more complex than an encoder for K = K,, alone;
and has compared the performance of this hypothesized
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decoder with a sequential decoder built with comparable  error rate at which conventional deep-space video mis-
technology. The presented curves show clearly that if the  sions operate, the softer threshold of the short-constraint
design failure probability is 10-* or less, the sequential  length codes means superior performance with the de-
decoder is somewhat superior, whereas with the 5X 10  coder described here.
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